On the Diophantine equation $1 + p^a = 2 + 2^b + 2^c p^d$

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Exponential Diophantine Equation ( 4 m 2 + 1

Let m be a positive integer. Then we show that the exponential Diophantine equation (4m2 + 1)x + (5m2 − 1)y = (3m)z has only the positive integer solution (x, y, z) = (1, 1, 2) under some conditions. The proof is based on elementary methods and Baker’s method. Mathematics Subject Classification: 11D61

متن کامل

On the Diophantine Equation X 2 + 7 =

In this paper we study the equation x+7 = y, in integers x, y, m with m ≥ 3, using a Frey curve and Ribet’s level lowering theorem. We adapt some ideas of Kraus to show that there are no solutions to the equation with m prime and 11 ≤ m < 10.

متن کامل

The Diophantine Equation B 2 X 4 ? Dy 2 = 1

If b and d are given positive integers with b > 1, then we show that the equation of the title possesses at most one solution in positive integers X; Y. Moreover, we give an explicit characterization of this solution, when it exists, in terms of fundamental units of associated quadratic elds. The proof utilizes estimates for linear forms in logarithms of algebraic numbers in conjunction with pr...

متن کامل

ON THE DIOPHANTINE EQUATION xn − 1 x −

We prove that if (x, y, n, q) 6= (18, 7, 3, 3) is a solution of the Diophantine equation (xn−1)/(x−1) = y with q prime, then there exists a prime number p such that p divides x and q divides p − 1. This allows us to solve completely this Diophantine equation for infinitely many values of x. The proofs require several different methods in diophantine approximation together with some heavy comput...

متن کامل

On the Diophantine equation |axn - byn | = 1

If a, b and n are positive integers with b ≥ a and n ≥ 3, then the equation of the title possesses at most one solution in positive integers x and y, with the possible exceptions of (a, b, n) satisfying b = a + 1, 2 ≤ a ≤ min{0.3n, 83} and 17 ≤ n ≤ 347. The proof of this result relies on a variety of diophantine approximation techniques including those of rational approximation to hypergeometri...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Rocky Mountain Journal of Mathematics

سال: 1985

ISSN: 0035-7596

DOI: 10.1216/rmj-1985-15-3-739